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ABSTRACT
Microvascular dysfunction (MVD) is considered a crucial pathway in the develop-
ment and progression of cardiometabolic and renal disease and is associated with
increased cardiovascular mortality. MVD often coexists with or even precedes mac-
rovascular disease, possibly due to shared mechanisms of vascular damage, such as
inflammatory processes and oxidative stress. One of the first events in MVD is en-
dothelial dysfunction. With the use of different physiologic or pharmacologic stim-
uli, endothelium-dependent (micro)vascular reactivity can be studied. This reactivity
depends on the balance between various mediators, including nitric oxide, endo-
thelin, and prostanoids, among others. The measurement of microvascular (endo-
thelial) function is important to understand the pathophysiologic mechanisms that
contribute to MVD and the role of MVD in the development and progression of
cardiometabolic/renal disease. Here, we review a selection of direct, noninvasive
techniques for measuring human microcirculation, with a focus on methods, inter-
pretation, and limitations from the perspective of chronic cardiometabolic and renal
disease.
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Noninvasive assessment of large arterial
structure and function has been revolu-
tionized by the development of vascular
ultrasound. This has enabled broad ap-
plication of measurement of carotid ar-
tery intima-media thickness andbrachial
artery flow-mediated, endothelium-
dependent vasodilation in observational
studies and clinical trials. In contrast,
broadly applicable assessment of micro-
vascular structure and function has lag-
ged behind, because such measurements
are technically demanding. Thus, assess-
ment of microvascular function has re-
lied, to an important extent, on the use of
indirect biomarkers ofmicrovascular en-
dothelial function such as albuminuria
and plasma or serum levels of molecules
produced by the endothelium (e.g., vWf

and soluble adhesion molecules). The
interpretation, merits, and limitations
of these biomarkers have been reviewed
elsewhere.1,2

Technologic advances have nowmade
noninvasive, direct assessment of micro-
vascular functionpossible.This is impor-
tant, because microvascular dysfunction
(MVD) is considered a crucial pathway in
thedevelopment andprogression of both
cardiometabolic3–5 and renal disease,6

and is associated with increased (cardio-
vascular) mortality.7,8 MVD often coex-
ists with or even precedes macrovascular
disease, possibly due to shared mecha-
nisms of vascular damage.9 A key player
in MVD is the endothelium.10,11 Classi-
cally, (micro)vascular endothelial func-
tion relates to endothelium-dependent

vasodilation in response to physiologic
or pharmacologic stimuli, which de-
pends on the balance between various
mediators such as nitric oxide (NO), en-
dothelin, prostanoids, etc.12 Nevertheless,
microvascular endothelium regulates
not only vasomotor tone, but also per-
meability, coagulation, fibrinolysis, and
proliferation.

Here, we review a selection of direct,
noninvasivemeasurements of themicro-
circulation, with a focus onmethods, in-
terpretation, and limitations from the
perspective of chronic cardiometabolic
and renal disease.

THE MICROCIRCULATION:
STRUCTURE AND FUNCTION

The microcirculation can be anatomi-
cally defined as blood vessels with a di-
ameter,200–150 mm and comprises
arterioles, capillaries, and venules. The
function of the microcirculation is to
distribute nutrients within, and collect
waste products from, tissues. In addi-
tion, the microcirculation is involved in
BP regulation because it is the major site
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of control of vascular resistance.13

Arterioles distribute bloodwithin tissues
according to local metabolic demand,
using vasomotion as an essential mech-
anism. The actual exchange of fluid and
solutes such as nutrients and hormones
with the interstitium takes place in
capillaries. Small venules not only collect
capillary blood, but also play a role in
determining capillary pressure. In addi-
tion, in many tissues, (postcapillary)
venules are the preferential site for adhe-
sion and diapedesis of leukocytes from
blood into tissue.14,15

Here, we define microvascular func-
tion as any activity of microvessels either
in the basal state or after stimulation.
Microvascular function is the result of
vessel wall components’ (smoothmuscle
cells, matrix, endothelium) structure
and function, which are inextricably
linked to neurogenic and local metabolic
influences. Nevertheless, microvascular
reactivity to various stimuli is often re-
ferred to as a “marker” of endothelial
function, because it importantly in-
volves endothelial vasomotor factors.

EXPLORING THE
MICROCIRCULATION
IN HUMANS

Noninvasive assessment of microvascu-
lar function is limited to a few organs:
skin (using videomicroscopy, laser-
Doppler flowmetry/imaging, or transcu-
taneous oxygen measurements), bulbar
conjunctiva (using videomicroscopy),
sublingual mucosa (using videomicro-
scopy),andretina(usingfundusphotography/
videomicroscopy). Generalization of
findings from one tissue to another
should of course be done with caution.
Although general functions of arterioles,
capillaries, and venules are the same
throughout the body, the organization
of the microcirculation and the control
of blood flow differ among tissues, de-
pending on metabolic demand and spe-
cific organ functions. In addition, the
position of a vessel segment in the
vascular tree determines endothelial
cell phenotype.15–17 Factors such as
flow type, shear stress, local metabolic

demands, and epigenetics shape the phe-
notype of the endothelium in the differ-
ent parts of the (micro)circulation. For
example, saphenous veins used in coro-
nary artery bypass grafting and thus ex-
posed to arterial flow conditions have
been shown to increase endothelial NO
synthase and reduce thrombomodulin
production.17 Also, the lack of correlation
between endothelial function measured in
conduit arteries (using flow-mediated
dilation) and in the microcirculation (e.g.,
retinal arteriolar dilation, postocclusive hy-
peremia in skin, and retinal arteriolar/
venular diameters)18–20 may be related to
differences in endothelial phenotype in the
different parts of the vascular tree.

Capillary Microscopy
Skin is a unique site for simple and
reproducible assessment of capillary
structure and function, where intravital
capillaroscopy can be used to directly vi-
sualize perfused nutritive capillaries. At
thefinger and toe nailfold, capillaries run
in parallel to the skin surface, which en-
ables evaluation of capillary morphology
and measurement of blood flow and
pressure. In all other parts of the skin,
capillaries areorientatedperpendicularly
to skin surface, enabling quantification
of capillary density. Only erythrocyte-
filled capillaries can be visualized with-
out dyes, using a bench-top or handheld
digital videomicroscope with blue or
green illumination (to enhance contrast
of red blood cells) and a system magni-
fication of approximately 1003. Classi-
cally, capillaries are visualized in the skin
of the dorsal phalanges of the third or
fourth finger, approximately 5mmprox-
imal to the nailfold. Besides baseline
capillary density, functional capillary re-
cruitment (increase in capillary density
after arterial occlusion) and the maxi-
mum capillary density (during venous oc-
clusion) can be assessed off-line manually
or semiautomatically21,22 (Figure 1).

Functional capillary recruitment re-
sults from upstream arteriolar dilation
involving amyogenic and endothelial re-
sponse, and localmetabolic factors.Max-
imal capillary recruitmentduringvenous
occlusion results from passive trapping
of erythrocytes in the capillaries. Both

recruitment capacities are physiologically
relevant, because they correlate inversely
with insulin resistance and BP.23–25 In ad-
dition, several studies have shown that
microvascular responses observed in
skin parallel those in muscle. For exam-
ple, insulin augments capillary recruit-
ment in both skin and muscle,26,27

whereas the presence of obesity or in-
creased free fatty acid levels attenuates
capillary recruitment.28,29 Capillary den-
sity changes may occur early and precede
the occurrence of disease. For example,
capillary densities and recruitment were
lower in normotensive individuals
with a family history of hypertension
and in borderline hypertensive individu-
als versus controls.30,31 Inmore advanced
disease, such as type 2 diabetes, hyper-
tension, and advanced CKD, capillary
rarefaction is also seen.21,32,33 In a
healthy cohort (mean age approximately
6265 years) it was shown that a diet
with high intake of sweets was associated
with lower capillary densities as com-
pared with a diet with high intake of
oil, poultry, and fish.34 In addition,
in a population-based study (mean age
approximately 6069 years) we found
that lower skin capillary density was in-
dependently associated with the pres-
ence of albuminuria, supporting a role
of capillary rarefaction in the pathogen-
esis of albuminuria.35 In summary,
these data suggest that skin capillary
density and, in particular, recruitment
capacity are associated with relevant
physiologic outcomes. Changes can be
measured in an early phase, before dis-
ease is clinically apparent. Reduced cap-
illary recruitment often parallels other
measures of MVD, e.g., in skin36 or in
the kidney (albuminuria).

Laser-Doppler Flowmetry
Moving red blood cells in the superficial
skin microvasculature give rise to a
Doppler shift of monochromatic laser
light, which is proportional to the con-
centration and speed of the blood cells.
With use of this principle, relative
changes in skin metabolic and thermo-
regulatory blood flow can be measured
in a single spot (approximately 1 mm3

of skin) or in a larger skin area with
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laser-Doppler perfusion imaging, reveal-
ing spatial heterogeneity in microvascu-
lar perfusion.37 The laser-Doppler signal
comes predominantly from small arteri-
oles and venules, and to a lesser extent
from capillaries.38

Baseline skin blood flow registrations
can be used to evaluate flowmotion.
Flowmotion is the result of vasomotion,
an important component ofmicrovascu-
lar function characterized by rhythmic
changes in (precapillary) arteriolar di-
ameter. Vasomotion leads to optimal
flow distribution to various tissue
regions for delivery of oxygen and nutri-
ents,39,40 and reduces hydraulic resis-
tance.41 The rhythmic changes in the
perfusion signal can be analyzed with
time-frequency methods (e.g., Fourier
or Wavelet) to distinguish the contribu-
tion of different frequency domains to
the signal. Typically, five domains can
be distinguished, which relate to cardiac
and breathing activity, and to (local) en-
dothelial, myogenic, and neurogenic ac-
tivity.42 Interest in flowmotion research
in the clinical setting is relatively new.
Small mechanistic studies have shown
that flowmotion can be enhanced by in-
sulin or after a meal,43,44 and that these
reactions are diminished in obesity. In
untreated hypertensive subjects, flow-
motion is augmented and normalizes
after treatment of hypertension.45 In
several other diseases, e.g., peripheral

arterial occlusive disease, diabetes,
CKD with or without dialysis, or hyper-
cholesterolemia, flowmotion has been
found to be attenuated.46 In a population-
based study we have shown that age
and waist circumference are inversely,
and BP is positively, associated with
flowmotion, independent of various
confounders.47 Vaso/flowmotion is un-
doubtedly an important function of the
microcirculation. However, more study
is needed to understand how cardiome-
tabolic risk factors affect flowmotion
signals. In addition, methodologic stan-
dardization is required for the calcula-
tion of the spectral value of the different
frequency intervals.

Stimulated skin bloodflowcan also be
measured, and gives reproducible mea-
sures of microvascular (maximal) re-
sponse capacity.48 Both postocclusive
and heat-induced reactive hyperemia
are partly endothelium dependent49,50

(Figure 2). Next, endothelium-dependent
and -independent reactivity can be mea-
sured as responses to acetylcholine (Ach)
or sodium nitroprusside, respectively,
applied with iontophoresis or microdial-
ysis.51,52 Stimulated skin blood flow re-
sponses have been studied extensively. In
healthy volunteers, the Ach- or heat-
induced vasodilator response correlated
with insulin sensitivity, but not with
BP.23,25 In cross-sectional studies, the
Ach-response has been found to be

reduced in adults with obesity,53 but
not in obese adolescents or overweight
adults.54,55 Hypertensive, as compared
with normotensive, individuals also
show a reduced Ach-response.56,57 Sev-
eral studies on both type 1 and 2 diabetes
have shown reduced Ach- and heat-
induced vasodilation, which is worse
when complications are present.58–61

These vasodilator responses are inversely
related to the level of glycemic control,
and improve with intensified glucose con-
trol.58,62 In a population-based study, we
have recently shown that the heat-induced
vasodilator response is attenuated in pre-
diabetes and even more in subjects with
type 2 diabetes. This vasodilator response
was inversely associated with fasting glu-
cose levels, 2 hours postglucose load lev-
els, and hemoglobin A1c levels, also after
extensive adjustment for potential con-
founders.63 Finally, in patients with
more advanced stages of disease, e.g., pe-
ripheral arterial occlusive disease, ESRD,
or coronary artery disease, these skin va-
sodilator responses are reduced, but can
be improved after treatment.64–66

In small studies, the skin vasodilator
responses to arterial occlusion,67 heat-
ing, and Ach68 have been shown to be
reduced in diabetic individuals and hy-
pertensive patients with albuminuria, al-
though contradicting results in relation
to Ach exist.69 Similarly, reduced skin
vasodilator responses have been ob-
served in individuals with advanced
CKD.70 However, for earlier CKD stages,
results are unclear.71

In conclusion, skin (endothelium-
dependent) vasodilator responses are
easy-to-use, sensitive, and physiologi-
cally relevant measures of microvascular
function. They can be used to detect early
changes, even before disease is clinically
apparent.

Retinal Imaging
Retinal imaging allows investigation of in
vivo structure and function of arterioles,
venules, and capillaries. Since the early
1920s, fundus photography has played a
prominent role in diagnosis and follow-
up of eye diseases. The widespread avail-
ability of this technique has facilitated
its use in many mechanistic and

Figure 1. Capillary density in skin on the dorsum of the finger. Images are stills from
videomicroscopy clips of exactly the samevisualfield (1mm2of skin). Left: Baseline capillary
density. Right: Capillary recruitment during postocclusive reactive hyperemia. The white
arrows represent examples of nonperfused capillaries under baseline conditions that are
recruited during postocclusive reactive hyperemia.
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epidemiologic studies. Widely used
microvascular variables are the central
retinal arteriolar/venular equivalents,
presented separately or as a ratio (arteri-
olar venular ratio). Besides diameters,
other measures of the retinal microvas-
cular network have been studied, e.g.,
tortuosity, bifurcation angles and opti-
mality, and fractal dimensions.72,73

Mechanisms of changes in retinal vessel
diameters can be both functional and
structural.74,75 For arterioles this involves
changes in endothelial vasodilators (e.g.,

NO)76 and constrictors, and BP-related
remodeling of the vessel wall.74,75 For
venular widening, inflammatory signals
and endothelial dysfunction have been
suggested to be involved.74 A limita-
tion of retinal microvascular analyses
from a static image may be that vessel
diameters change rhythmically due to
vasomotion, which increases intra-
and interindividual variability of single
image diameter assessments. Recent de-
velopments in dynamic retinal imaging
techniques have introduced the possibility

to measure perfusion and microvessel
constrictor responses to oxygen breath-
ing or (endothelium-dependent) dila-
tor responses to flicker light63,76–78

(Figure 3).
There is a very large body of retinal

microvascular studies in relation to
cardiometabolic/renal risk factors anddis-
eases. These include mechanistic, cross-
sectional, population-based cohort, and
longitudinal studies. For example, it has
consistently been shown, across age
groups, that both current and past higher

Figure 2. Typical registration of skinmicrovascular perfusion, measured with laser-Doppler flowmetry, before and during local heating of
the skin in a healthy volunteer. After 2 minutes of baseline flow registration, skin heating to 44°C is started for 23 minutes. Time (minute) is
depicted on the x axis and skin perfusion (arbitrary perfusion units, PU) on the y axis. The heat-induced skin hyperemic response is ex-
pressed as the percentage increase in average perfusion units during the 23-minute heating phase over the average baseline perfusion
units.

Figure 3. Typical registration of diameter changes of a single retinal arteriole and venule before, during, and after a 30-second flicker light
period (t=50 to t=80 seconds) in a healthy volunteer. Time (seconds) is depicted on the x axis and diameter (micrometers) on the y axis. The
flicker light–induced vasodilator response is expressed as the average increase in diameter during flicker light as a percentage over
baseline diameter.

3464 Journal of the American Society of Nephrology J Am Soc Nephrol 28: 3461–3472, 2017

BRIEF REVIEW www.jasn.org



BP are associated with reduced arteriolar
diameters.79–81 Smaller arterioles may
not only be an adaptive response to
higher BP, but also predict (and possibly
contribute to) the development of hyper-
tension.82 The BP-related reduction in
arteriolar diameter seems to be revers-
ible. In hypertensive individuals, fre-
quent fish consumption was associated
with wider arteriolar and narrower venu-
lar diameters.83 In addition, 6–12 months
of BP treatment resulted in wider arterio-
lar diameters.84,85 Finally, lifestyle inter-
ventions may also be a treatment option
to normalize microvascular diameters.86

Data on retinal microvascular diame-
ters and renal function or disease are less
consistent. Cross-sectional data from an
Asian population-based cohort showed
an association between smaller arteriolar
diameters and CKD (defined as eGFR of
,60 ml/min per 1.73 m2 or the presence
of micro/macroalbuminuria) indepen-
dent of the presence of diabetes and hy-
pertension.87 In addition, patients with
CKD (stage 2–4) with small retinal arte-
riolar diameters were shown to develop
more renal end points (function loss or
start of dialysis) as compared with pa-
tients with larger arteriolar diameters.88

However, longitudinal population-based
cohort studies did not find associations
between baseline retinal arteriolar/
venular diameters and incident
CKD.6,89

Taken together, retinal microvascular
diameters are relevant, sensitive, valid,
reproducible, and consistent markers of
microvascular function.

Flicker light can be used to enhance
retinal metabolic activity, which, via
neurovascular coupling, leads to endo-
thelium-dependent vasodilation (in-
volving NO) and increased blood
flow.76,90 Recently, we reported, in a
population-based setting, that the reti-
nal arteriolar dilator response to flicker
light was reduced in individuals with
prediabetes and type 2 diabetes versus
normoglycemic individuals.63 In small
cross-sectional studies, similar findings
of reduced retinal endothelial function
have been found in individuals with hy-
pertension, obesity, and coronary artery
disease.91–93 Recently, it was shown, in
patients with diabetes and/or cardiovas-
cular disease, that retinal endothelial
function correlates with creatinine clear-
ance and eGFR.94 Because follow-up
studies on retinal vasoreactivity are

scarce, the prognostic value of these
measurements remains to be explored.
Nevertheless, microvascular (endothe-
lial) reactivity data add valuable
(patho)physiologic information to static
retinal diameter/morphometry data.

DETERMINANTS OF MVD

As stated above, dysfunction of the mi-
crocirculation may occur early and con-
tribute to the development of disease.
Several determinants of MVD have
been identified (Figure 4).

Genetics
Normotensive offspring of hypertensive
parents have structural and/or functional
microvascular changes,95 with a lower
number of skin capillaries (rarefaction)
and reduced capillary recruitment ca-
pacity as compared with matched con-
trol individuals.30 In another study,96

both skin capillary density and heat-
induced hyperemia were reduced in hy-
pertensive individuals with hypertensive
versus normotensive parents. Similarly,
normotensive offspring of hypertensive
parents had lower glomerular filtration

Figure4. Hypothesisdescribingdeterminants contributing toMVDandsubsequentorgandysfunction.Weheredefinemicrovascular (dys)
functionbeing the result of vesselwall components’ (smoothmuscle cells,matrix, endothelium) structure and function, andneurogenic and
local metabolic influences. Early MVD leads to impaired insulin-mediated glucose uptake and raised peripheral resistance, which con-
tributes to the development of insulin resistance/type 2 diabetes, and hypertension, respectively. The hyperglycemic milieu and hy-
pertension in turn further aggravate MVD leading to a vicious cycle (dashed arrows). ↑, stimulated (levels of); ↓, reduced (levels of); AGEs,
advanced glycation end products; FFA, free fatty acids.
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reserve, which seemed to be related to
lower NO formation.97 Importantly,
lower glomerular filtration reserve is in-
dicative of renal MVD with glomerular
hyperfiltration. The latter may lead to
glomerular capillary rarefaction and
eventually the development of albumin-
uria as well as a decline in kidney func-
tion. Because hypertension is, at least in
part, an inherited condition, the above
findings thus suggest that genetic factors
may contribute to MVD and that MVD in
individualswithhypertension is of primary
origin.

Low Birth Weight
Suboptimal intrauterine circumstances
may result in low birth weight, which
has been linked to cardiometabolicdisease
in adult life.98 Endothelial dysfunction,
particularly reduced NO synthesis and
NO scavenging by reactive oxygen species,
may be a mechanism explaining these as-
sociations. Indeed, skin endothelium-
dependent vasodilation to Ach has been
found to be inversely associated with
body weight and size in newborns.99,100

In contrast, functional and structural
skin capillary densities seem to be higher
in low birthweight as comparedwith nor-
mal birthweight newborns,101 although at
prepubertal age this seems to be re-
versed.102 In addition, adults who were
born preterm show reduced skin capillary
densities,103 and retinal arteriolar diame-
ters and vascularization.104,105

Similarly, low birth weight has been
linked to the development of CKD later
in life. This risk has been ascribed to a
lower nephron number, which may result
in an increased susceptibility to glomeru-
lar hypertension and a lower glomerular
filtration reserve. Indeed, birth weight is
positively associated with nephron num-
ber in neonates as well as adults.106

Physical Inactivity
Two meta-analyses have shown that
endothelium-(in)dependent microvas-
cular function is enhanced in both
athletes and trained adults versus healthy
controls.107,108 Vice versa, physical inac-
tivity has been found to induce MVD
acutely in healthy volunteers after bed
rest.109,110 In addition, population-

based cohort studies have shown that
less physical activity/increased television
viewing time is associated with wider
retinal venular diameters.111,112 These
data support the concept that regular ex-
ercise is associated with generalized im-
provement of microvascular function in
the absence of disease. Although the ex-
act mechanisms involved remain to be
elucidated, increased shear stress/pres-
sure and reduced oxidative stress levels
due to physical activity have been pro-
posed to contribute to augmented NO
bioavailability and reduced activity of
vasoconstrictor pathways.113,114 In line
with these mechanisms of improved en-
dothelial function, the Nurses’ Health
Study found that higher levels of physi-
cal activity were associated with lower
albumin-to-creatinine ratio.115 In addi-
tion, in patients with type 1 diabetes,
higher levels of leisure-time physical
activity were associated with less pro-
gression to renal failure (on the basis of
urinary albumin excretion rate) and less
incidence of microalbuminuria over 6
years of follow up.116

Obesity
Many studies have shown that MVD is
present in obesity.117 Already at a young
age, obesity is independently associated
with smaller retinal arteriolar and wider
venular diameters,118 which continues
in adults.119 Wider retinal venular, but
not smaller arteriolar, diameters may pre-
dict development of obesity.120 In addi-
tion, skin capillary recruitment capacity53

and impaired endothelium-dependent
microvascular dilation in skin and mus-
cle have been found in obese individu-
als.43,121,122 Several mechanisms may be
involved in obesity-related MVD. Ele-
vated free fatty acid levels augment skin
MVD,28 and expanded/dysfunctional ad-
ipose tissue (1) releases inflammatory
signals leading to reduced NO and in-
creased endothelin-1 production; and
(2) leads to changes in adipokine profile
(less adiponectin and more leptin, resis-
tin, and angiotensinogen).117,123 Visceral
adipose tissue seems to be the most
important source of this endocrine sig-
naling to the microcirculation, but
paracrine signaling from perivascular

adipose tissue affects microvascular
function as well.124

Relevant clinical consequences of
obesity-related MVD are insulin resis-
tance and raised BP.117 Subsequently,
chronic hyperglycemia contributes to
further deterioration of microvascular
endothelial function.125 Raised BP con-
tributes to endothelial dysfunction, arte-
riolar wall remodeling, and capillary/
arteriolar rarefaction.95 Together, these
conditions progressively aggravate each
other in a vicious cycle. At the level of the
kidney, MVDmay lead to increased GFR
and renal blood flow with glomerular
hyperfiltration.126 The latter likely con-
tributes to the development of second-
ary FSGS and loss of kidney function in
individuals with (severe) obesity.127

Aging
The hallmark of aging is a gradual loss of
functional reserve in all organs and tis-
sues, including the (micro)vasculature.
Investigating the independent effects of
aging on themicrocirculation is complex
due to interrelationships of aging with
increasing levels of cardiometabolic risk
factorsandincidentcardiovasculardisease.
Longitudinal data from a population-
based study showed reduced retinal
arteriolar/venular diameters with in-
creasing age, and a history of cardiovas-
cular disease and CKD was associated
with a change in venular diameter over
time.128 In another cohort, age was inde-
pendently associated with skin microvas-
cular flowmotion.47 These findings in the
systemic microcirculation parallel the
significant loss of nephrons with aging
observed in healthy kidney donors.129

Oxidative stress and inflammatory
processes in the endothelium have been
proposed to be the main drivers of MVD
in aging.130

FUTURE DIRECTIONS

In this brief review, we focused on a few
techniques only that are easy to apply,
even in large-scale studies (Table 1).
New developments may add valuable in-
formation to the status of microvascular
function. First, the integrity of the
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endothelial surface layer (glycocalyx) is
important in the glomerular barrier
function.131,132 Endothelial activation
leads to degradation of the glycocalyx
with subsequent albuminuria, support-
ing the link between generalized endo-
thelial activation, albuminuria, and renal/
cardiometabolic disease.1,132 Using side-
stream darkfield imaging, it is now pos-
sible to measure glycocalyx dimensions
of the sublingual microcirculation in a
clinical setting.133 For example, Dane
et al.133 showed that patients with
ESRD had a thinner glycocalyx versus
healthy controls, and glycocalyx thick-
ness correlated with eGFR. Interestingly,
glycocalyx thickness in patients with a
stable kidney transplantation was found
to be in-between that of patients with
ESRD and controls, suggesting reversal
of endothelial dysfunction.133 Second,
cerebral small vessel disease is a term
used to describe pathologic, neuroimag-
ing, and clinical features related to abnor-
malities of cerebral microvessels. Cerebral
small vessel disease is associated with
(incident) stroke, dementia, cognitive
decline, and depression. With use of
magnetic resonance imaging, various
brain tissue abnormalities can be as-
sessed (e.g., white matter hyperintensi-
ties, microbleeds, lacunar infarcts) which
indirectly reflect microcirculatory func-
tion. For further reading, please see
references.134,135 Third, near-infrared
spectroscopy may be another interesting
development. Near-infrared spectros-
copy does not actually measure micro-
vascular function, but measures O2

delivery and tissue capacity to use O2.
Besides the skeletal muscle, this tech-
nique can also be applied to the brain,
giving opportunities to study microcircu-
lation-related end organ damage.136,137

Future longitudinal andpopulation-based
studies are needed to prove the validity of
these techniques in measuring microvas-
cular function.

CONCLUSIONS

The studies reviewed here show that
MVDisassociatedwithmanycardiometa-
bolic/renal disease risk factors, andTa
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precedes and contributes to the develop-
ment of disease. MVD measured in dif-
ferent tissues tends to show similar
associations with cardiometabolic risk
factors, suggesting that common patho-
physiologic mechanisms (e.g., low grade
inflammation, oxidative stress, etc.) are
involved. It is, however, important to
note that adaptation, to the same risk
factor, may differ between vessel types.
For example, cohort studies found BP
to be inversely associated with retinal ar-
teriolar but not, or even positively, with
venular caliber.138,139 In addition, in a
cross-sectional study comparing micro-
vascular responses to a mixed meal in
obese versus lean individuals, Ach-
induced skin arteriolar/venular vasodilation
(measured with laser Doppler flowme-
try) was attenuated in the obese, whereas
skin capillary recruitment capacity was
unchanged.43

Most of the studies reviewed have a
cross-sectional design.Hence, longitudi-
nal observational and intervention stud-
ies are needed to unravel how MVD
contributes to the development and
progression of disease. The technology
to do so is now available. For individual
risk assessment, normative data for each
technique areneededacross the sexes and
age ranges, as are standardized protocols
for measurement and analysis of data,
preferably with automated investigator-
independent software.
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